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Streams Library Description  
The document describes the kernels found in the Gedae streams library.  It also lets the user know how 
to find various kernels in the streams library and provides a convention that users should use for 
creating their own libraries.  The first section defines the naming convention and style of the kernels.  

1 Kernel Name Format 
The typical kernel name will be one of the following form: 

<Token Type><Data Type>_[prefixes]<RootName>[<ParamType>] 

<Token Type1>_<Token Type2>  /* token type conversion operator */ 

<Token Type><Datat Type1>_<Token Type>_<Data Type2>  /* casting operator */ 

Examples:  

mf_rsum has the equation: 

out[r] += in[r][c]; 

mf_ gives the input token type of matrix and the data type of float. The prefix r is used for matrix 
collapsing operators to indicate the collapsing is along the row dimension.  The root name sum indicates 
that the += collapsing operator is used.   

vxf_multVX has the equation: 

out[n] = in[n]*VX[n]; 

vxf_ give the input token type, mult says the operation is an element wise multiplication and VX 
indicates that one of the operands is a complex parameter vector 

sf_si has the equation: 

int out = in;  

the sf indicates the input type is a scalar float and the si indicates the output type is a scalar int. 

m_v has the equation 

out[c](r) = in[r][c]; 

2 Data Type Names and Token Type Names: 
This following table lists the data type names.  



Type <Data Type> Directory Name Comment 
float  f float  
int  i int  
char  c char  
short  s short  
unsigned int ui uint  
unsigned char uc uchar  
unsigned short us ushort  
double d double  
complex xf complex Single precision complex 
dcomplex xd dcomplex Double precision complex 
void (no prefix)   
 

The next table lists the token type names.  

Object <Token Type> Directory Name 
Scalar s scalar 
Vector v vector 
Matrix m matrix 
3d array a3 array3d 
 

Examples: vxf_add.k is a single precision complex vector add.   v_m is a void type vector to matrix 
conversion.  Void type kernels can be connected to any data type.  a3f_abs.k is an element-wise 
absolute value of a floating pointer 3d array. mi_mmult.k is an integer matrix multiply.  sf_fir.k is a scalar 
float fir filter. 

3 Streams kernel directory path 
Kernels in the streams directory are put in directories based on their token type and data type.   Kernels 
that input/output void tokens with no dimensions specified will take on the type and dimensionality of 
the data ports they are connected to.  These are called generic kernels as they apply to any datatype.  
An example of such a kernel is the streams/copy.k that will copy the value of any input stream to the 
output. These kernels reside in the toplevel streams directory.  If the highest dimensional token type of 
a kernel input/output is 0 dimensional the kernel reside in the streams/scalar directory.  Vectors are in 
the streams/vector directory, matricies in the streams/matrix directory and 3d tokens in the 
streams/array3d directory.    If the token type is specified but the data type is not (data types set to 
void) then the kernel appears in these directories. Otherwise the kernel appears in a subdirectory with 
the name of the data type.  So for example a complex vector fft is found in 
streams/vector/complex/vxf_fft.k and a generic matrix family row part function is found in 
streams/matrix/m_rpart_fam.k.     



The streams directory structure is illustrated in the following diagram.   Only directories for types int, 
float and complex are shown but additional directory typenames include char, short, uchar (unsigned 
char), ushort, uint, double and dcomplex (double complex).    
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4 Port Names 
Kernels with just one stream input and one stream output (or a family of either) will name the inputs in 
and the output out. Kernels that have two or more interchangeable inputs, such as the sf_add.k kernel, 
will name their inputs a, b, c, ... up to the number of inputs.  A single float/double parameter input to a 
binary operator will be named K.  Complex/dcomplex parameters will be named X.  Vector parameter 
inputs of type float/double or complex/dcomplex will be named VK and VX respectively.  And matrix 
parameter inputs of type float/double or complex/dcomplex will be named MK and MX respectively.  
When a binary operator parameter input is the first input of a kernel the parameter name is added as a 
prefix to the root name.  For example the kernel that has scalar float inputs and the equation out = K/in 
has the name sf_Kdiv.  If a parameter is the second input of a kernel the parameter name becomes a 
suffix to the root name.  For example a kernel with float input in that produces a complex vector ouptut 
out is and implements the equation out[i] = in*VX[i] has the name sf_multVX. 

A parameter that specifies a vector dimension output will have the name N or begin with N followed by 
lower case letters to further describe the parameter.  Parameters that specify the row size of a matrix 
will be named R or begin with R and a parameter specifying the column size of a matrix will be named or 
begin with C.  Three-d arrays will have dimension parameters names beginning with X, Y and Z 
respectively. 

5 Kernels Descriptions 
As previously stated, a Gedae kernel can be described by its token type, data type and root name and 
various prefixes and suffixes.  The root name of the kernel describes the basic function the kernel 
performs.  Examples of root names are add, fft, mmult, norm.  This section list different catagories of 
functions and the root names associated with each.  Th Idea expression, function or operator that the 
root name corresponds to is described as are the data types and token types to which it applies.   

5.1 C operators 
The table below lists the root names for all binary and unary C operators.  The binary operators 
generally have both operands of the same type.  The * operators can in addition have one operand of 
type float and one of type complex.   

Operator Type Root Name Data Types 
+ Binary add All 
- Binary sub All 
* Binary mult All 
/ Binary div All 
/ with zero check Binary divz All 
1.0f / Unary recip f,d,xf,xd 
== Binary eq All 
!= Binary ne All 
<= Binary le c,s,i,f,d 
< Binary lt c,s,i,f,d 
>= Binary ge c,s,i,f,d 



> Binary gt c,s,i,f,d 
&& Binary and c,s,i 
|| Binary or c,s,i 
& Binary bitand c,s,i 
| Binary bitor c,s,i 
! Unary not c,s,i 
~ Unary bitnot c,s,i 
- Unary neg All 
? :  Tertiary select All 
* + Tertiary multadd f,d 
* - Tertiary multsub f,d 
- * Tertiary submult f,d 
 

All binary operators have versions with a parameter as the second input (add K or X suffix to name).  The 
sub and div operators have versions with a parameter as the first input (add K or X prefix to name).  
Operators mult and add can in addition take a parameter of a higher dimensionality.  For example 
sf_addVK.k adds a scalar stream to a vector parameter.   

Multiply-add and multiply-subtract kernels are also provided to link to E functions that best utilize 
multiply-add ALUs.  Similar combinations of arrays and types are possible, however complex tokens are 
not used as the connection to ALU performance is indirect.  Also not used are combinations where there 
are more adds than multiplies, such as the hypothetical kernel sf_sf_vf_multadd (out[i] = a*b + c[i]). 

Examples:   

A list of all the binary add kernels of type float for scalars, vectors and matrices are: 

Kernel Equation Description 
sf_add out = a+b scalar addition of streams 
sf_addK out = in+K addition of scalar stream to parameter 
sf_addVK out[n] = in+VK[n] addition of scalar stream to vector parameter 
sf_addMK out[r][c] = in+MK[r][c] addition of scalar stream to matrix parameter 
vf_add out[n] = a[n]+b[n] vector addition 
vf_addK out[n] = in[n]+K addition of vector stream to scalar parameter 
vf_addVK out[n] = in[n]+VK[n] addition of vector stream to vector parameter 
vf_raddMK out[r][c] = in[c]+MK[r][c] add vector in to every row of MK 
vf_caddMK out[r][c] = in[r]+MK[r][c] add vector in to every column of MK 
vf_sf_add out[n] = in[n]+k add scalar k to every element of vector in 
mf_add out[r][c] = a[r][c]+b[r][c] add matrix a to b 
mf_addK out[r][c] = in[r][c]+K add scalar parameter K to matrix in 
mf_raddVK out[r][c] = in[r][c]+VK[c] add vector parameter VK to every row of in 
mf_caddVK out[r][c] = in[r][c]+VK[r] add vector parameter VK to every column of in 
mf_addMK out[r][c] = in[r][c]+MK[r][c] add stream matrix in to parameter matrix MK 
mf_sf_add out[r][c] = in[r][c]+k add matrix stream in to scalar stream k 
mf_vf_radd out[r][c] = a[r][c]+b[c] add vector b to every row of a 



mf_vf_cadd out[r][c] = a[r][c]+b[r] add vector b to every column of a 
 

A list of all the binary multiply kernels of type float, for scalars, vectors and matrices are: 

sf_mult, sf_multK, sf_multX, sf_multVK, sf_multVX,  sf_multMK, sf_multMX, vf_mult, vf_multK, 
vf_multX, vf_multVK, vf_multVX, vf_rmultMK, vf_cmultMK, vf_rmultMX, vf_cmultMX,  vf_sf_mult, 
vf_sxf_mult, mf_mult, mf_multK, mf_multX, mf_rmultVK, mf_multVX, mf_cmultVK, mf_multMK, 
mf_cmultVX, mf_rmultVX, mf_multMX, mf_sf_mult, mf_vf_rmult,  mf_vf_cmult, mf_sxf_mult, 
mf_vxf_rmult, mf_vxf_cmult. 

A list of all the multiply-add kernels of type float, for scalars, vectors and matrices are: 

sf_multadd, sf_sf_K_multadd, sf_K_sf_multadd, sf_{MK,VK}_sf_multadd, sf_{MK,VK}_K_multadd, 
sf_VK_VK_multadd, sf_MK_MK_multadd 

vf_multadd, vf_vf_sf_multadd, vf_vf_K_multadd, vf_vf_VK_multadd, vf_VK_vf_multadd, 
vf_VK_VK_multadd, vf_VK_sf_multadd, vf_VK_K_multadd,  

mf_multadd, mf_mf_sf_multadd, mf_mf_K_multadd, mf_mf_MK_multadd, mf_sf_mf_multadd, 
mf_sf_MK_multadd, mf_sf_sf_multadd, mf_sf_K_multadd, mf_MK_mf_multadd, mf_MK_MK_multadd, 
mf_MK_sf_multadd, mf_MK_K_multadd, mf_K_mf_multadd, mf_K_MK_multadd, mf_K_sf_multadd, 
mf_K_K_multadd 

vf_{sf,K}_{sf,K,vf,VK}_multadd, sf_VK_vf_multadd, 

mf_{vf, VK}_{sf,K,vf,VK,mf,MK}_{r,c}multadd, vf_MK_{sf,K,vf,VK,mf,MK}_{r,c}multadd 

5.2 Standard math library functions: 
RootName Datatypes 
cos,sin,tan f,d 
cosh,sinh,tanh f,d 
acos,asin,atan,atan2 f,d 
hypot f,d 
sqrt f,d,xf,xd 
exp f,d,xf,xd 
exp2, exp10 f,d 
log,log10 f,d 
log2 i,f,d 
floor,ceil f,d 
round,trunc f,d 
abs i,f,d,xf,xd 
min,max* i,f,d 
minabs,maxabs All 
pow+ f,d 
mod i,f,d 



conj xf,xd 
pol2rec xf,xd 
rec2pol xd,xf 
sqr All 
signsqr i,f,d 
* K suffix version also 
+ K prefix and suffix versions also 

Kernels for all the functions exist for all the token types (s, v, m, and a3) 

5.3 Filtering Functions 
The following filter functions are provided for scalar token types.   

Root Name Function Data Types Comment 
acc out=out(-1)+in; f,d,xf,xd Integration 
macc out=out(-1)+a*b; f,d,xf,xd Multiply Accumulate 
lpf out=A*in+(1-A)*out(-1);   out=lpf(in,A); f,d,xf,xd Single Pole Low Pass Filter 
fir out+=C[i]*in(-i);                  out=fir(in,C); f,d,xf,xd FIR Filter 
firD out=firD(in,C,D); f,d,xf,xd Decimating FIR Filter 
 

5.4 Special integer functions 
The following functions that operate only on integers are useful for calculating parameters  

bf(a,b)                              biggest factor in a that is a power of b  
gcd(a,b)                            greatest common denominator of a and b 
lcm(a,b)                             least common multiple of a and b 
 

For example functions si_bf, si_gcd and si_lcm are provided. 

5.5 Source functions  
The following functions provide generic stream sources.    All inputs to these functions are parameters. 

Root Name Data Types Comment 
random(Seed) i random number between 0 and 0x7ffffff with initial seed of Seed 
uniform(Seed) f uniform distribution between 0 and 1 with initial seed of Seed 
normal(Seed) f,d,xf,xd normal distribution with mean 0 and stdv 1 and initial seed of Seed 
poisson(P,Seed) i output is 1 with a probability of P and 0 with a probability of (1-P). 
ramp(K) f,d,xf,xd ramp with initial value of 0 and step size of K 
osc(F,A,P) f,d,xf,xd oscillator with radian frequency F, amplitude A and starting phase P 
constant(K) void type stream with constant value K 

5.6 Collapsing library functions 
The collapsing opertators are supported with kernels having with root names given in the following 
table. 



Operator RootName 
+= sum 
*= product 
>?= max 
<?= min 
||= any 
&&= all 
|= bitany 
&= bitall 
 

The Collapsing kernels can have the following prefixes on the root name: 

Prefix Operation 
 Collapse all the dimensions 
f Collapse family index 
N Collapse time index 
r Collapse row 
c Collapse column 
x Collapse x 
y Collapse y 
z Collapse z 
xy Collapse xy 
yz Collapse yz 
xz Collapse xz 
 

Example float sum box: 

The collapsing sum operation the most important of the collapsing operators.  All of the following 
kernels are provided in the library.   

Kernel Name Equation 
scalar/float/sf_fsum.k out+=[f]in 
scalar/float/sf_Nsum.k out+=in(n) 
vector/float/vf_sum.k out+=in[n] 
vector/float/vf_fsum.k out[n]+=[f]in[n] 
vector/float/vf_Nsum.k out[n]+=in[n](m) 
matrix/float/mf_sum.k out+=in[r][c] 
matrix/float/mf_fsum.k out[r][c]+=[f]in[r][c] 
matrix/float/mf_csum.k  out[c]+=in[r][c] 
matrix/float/mf_rsum.k out[r]+=in[r][c] 
matrix/float/mf_Nsum.k out[r][c]+=in[r][c](n) 
array3d/float/a3f_sum.k out+=in[x][y][z] 
array3d/float/a3f_fsum.k out[x][y][z]+=[f]in[x][y][z] 
array3d/float/a3f_xsum.k out[x]+=in[x][y][z] 
array3d/float/a3f_ysum.k out[y]+=in[x][y][z] 



array3d/float/a3f_zsum.k out[z]+=in[x][y][z] 
array3d/float/a3f_xysum.k out[x][y]+=in[x][y][z] 
array3d/float/a3f_yzsum.k out[y][z]+=in[x][y][z] 
array3d/float/a3f_xzsum.k out[x][z]+=in[x][y][z] 
array3d/float/a3f_Nsum.k out[x][y][z]+=in[x][y][z](n) 
 

5.7 Threshold operations 
clip: out = a<b ? b : a > c ? c : a; 

5.8 Data reorg operations 
Data reorg operations do not change the values of individual word but instead reogranize them in time 
and space.  For example, matrix transpose, partitioning, concatenation and gather operations are all 
data reorg operations.   

5.8.1 get - extract elements from a token 
The get operations extract scalars, subvector or submatrix from a token based on integer parameter 
inputs that control the offset and/or size of the output token.  The input token can be either a stream or 
a parameter.  A get function that has no suffix outputs a subtoken of the same dimension as the input 
token.  Otherwise the get function outputs a token of the type of the suffix.  When a nonscalar but lower 
dimension type of token is output from a get function a prefix indicating the direction in which the 
output token is taken from the input is given.  If it gets a subtoken out of that dimension the root name 
is changed to getsub. 

v_get.k  has equation out[i] = in[i+N0];   Gets a subvector from input vector in beginning at offset Noff. 

m_rget_v.k has equation out[c] = in[R0][c]; 

m_rgetsub_v.k has equation out[c] = in[R0][c+C0]; 

 

streams/vector/v_resize.k out[i]=in[i]; range i = N; 
streams/vector/v_resize_clr.k out[i]=i<dimof(in)?in[i]:0; range i = N; 
streams/vector/v_get.k out[i]=in[i+N0];  range i = N; 
streams/vector/v_get_s.k  out=in[N]; 
streams/matrix/m_get.k out[r][c]=in[r+R0][c+C0]; range r=R; range c=C; 
streams/matrix/m_get_s.k out=in[R0][C0] 
streams/matrix/m_rgetK_v.k out[c]=in[R0][c];  
streams/matrix/m_rgetsubK_v.k out[c]=in[R0][c+C0]; range c=C; 
streams/matrix/m_cgetK_v.fg out[r]=in[r][C0]; 
streams/matrix/m_cgetsubK_v.fg out[r]=in[r+R0][C0]; range r=R; 
 



5.8.2 set - insert elements into a token 
The set and setsub functions inserts elements into a token.  All set functions take an input token that is 
the same size as the output token to which the output token is initially set.  Then a part of the output 
token is set to a smaller token.  For example given input streams in[n] and v[nj] and integer offset 
stream k, the v_set.k kernel implements the idea expression 

out[n] = set(in,v,k);   

Which is equivalent to: 

out[n] = in[n]; 
out[nj+k] = v[nj]; 
 
All set functions begin by setting the output to the input and only differ in how they then adjust the 
output based on the other paramters.   The following table assumes the initial setting of the input to the 
output and only describes how the set functions then modify the output further.  Capital letter names 
are parameters.  Currently not all possible varients of set functions have been implemented but since 
streams can be connected to parameters this is not a serious limitation.  Missing set functions may be 
supplied on request. 
 
 
 
 
Kernel Name Idea Equation Algebraic Expression 
v_set.k out[n] = set(in,v,k) out[nj+k] = v[nj] 
v_setK.k out[n] = set(in,v,K) out[nj+K] = v[nj] 
v_si_setK.k out[i] = set(in,K,si); out[si] = K 
v_VK_set.k out[i] = set(in,VK,k) out[nj+k] = Vk[nj] 
v_s_set.k out[i] = set(in,s,k); out[k] = s 
v_VK_setK.k out[i] = set(in,VK,K) out[nj+K] = Vk[nj] 
v_s_setK.k out[i] = set(in,s,K); out[K] = s 
m_setK.k out[r][c] = set(in,m,R0,C0) out[rj+R0][cj+C0] = m[rj][cj] 
m_s_setK.k out[r][c] = set(in,s,R0,C0) out[R0][C0] = s 
m_v_csetK.fg  out[r][C0] = v[r] 
m_v_csetsubK.fg  out[rj+R0][C0] = v[rj] 
m_v_rsetK.k out[r][c] = rset(in,v,R0) out[R0][c] = v[c] 
m_v_rsetsubK.k out[r][c] = rsetsub(in,v,R0,C0) out[R0][cj+C0] = v[cj] 
a3_setK.k out[x][y][z] = set(in,a,X0,Y0,Z0) out[xj+X0][yj+Y0][zj+Z0] = a[xj][yj][zj] 
 

 

5.8.3 Time partitioning and concatenation 
Partitioning tokens in time allows large tokens to be broken into smaller tokens that can entirely fit in 
cache.  Typically the large token will be partitioned – many operations will be done on the token – and 



then it will be concatenated back into a full sized token.   Because the operations are done on the 
smaller partitioned token operations can be strung together and done without a cache miss.  The 
functions that are provided are: 

part_strm - partition a token to a stream of tokens covering the input token 
concat_strm – concatenate a stream of tokens into a single token – inverse of part_strm 
parteq_strm – partition a token into N equal sized tokens that may not cover the input 
concateq_strm – concatenate N equal sized tokens into an output token – inverse of parteq_strm 
 
These functions have void data input so appear in the stream/vector, stream/matrix or stream/array3d 
libraries.  
 
For example the following vector and matrix kernels are provided: 
v_part{,eq}_strm.k 
m_{r,c}part{,eq}_strm.k 
a3_{x,y,z}part{,eq}_strm.k 
 
Partitioning of matrices can be across row dimension or column dimension, so the r and c prefixes are 
used to specify this information.  Similarly, for 3-d arrays, x, y, z are used.   Partitioning a matrix into tiles  
(partitioning in both the r and c direction) can be achieved by first doing an m_rpart_strm and following 
it with an m_cpart_strm.   
 
Because the goal of the part_strm functions is to break the token into subtokens of a given size that fit 
in cache the parameters to the part_strm function specify the maximum dimension size.   Tokens of the 
maximum size are partitioned out of the token with the last token partitioned out handling the 
remainder. For example if a v_part_strm kernel is applied to an input token of size N and specifies a 
maximum size of Nmax then the output will consist of floor(N/Nmax) tokens of size Nmax and – if Nmax 
does not divide evenly into N – one additional token of size N%Nmax.   m_rpart_strm takes Rmax as a 
parameter and m_cpart_strm takes Cmax as a parameter.  Similarly the a3_<x,y,z>_strm functions take 
Xmax,Ymax or Zmax as paramters. 
 
The concat_strm concatenation function takes the max value passed to the partitioning function and the 
size of the input token to the partitioning function as parameters.  So v_concat_strm will take Nmax and 
N as parameters.    With this information the v_concat_strm function can calculate the number of 
tokens needed to rebuild the output vector of size N. 
 
The parteq_strm kernels are a bit simpler.  The input parameter N specifies how many equal sized 
tokens to break the input token into.  If the input token is of size N1 then the N output tokens are of size 
floor(N1/N).  Because the tokens have equal size they may not cover the input token if N does not divide 
evenly into N1.     The concateq_strm kernels take the same parameter N and just concatenate N equally 
sized input tokens on the input stream into an output vector that is N times as big as the input vector. 
 



5.8.4 Spatial partitioning and concatenation 
Spatial partitioning boxes break an input token into a family of output tokens so the tokens can be 
processed in parallel.     As such these kernels are some of the most important functions in the library. 

Root Name Description. 
part_fam partition to a family tokens that completely cover the input. 
partovl_fam partition into a family of overlapped tokens 
parteq_fam partition into a family of equal sized tokens possibly not covering the input  
parteqovl_fam  partition into family of equal sized overlapping tokens 
concat_fam concatenate from a family of streams 
concateq_fam concatenate using equal sized tokens 
 
These functions are provided for vectors, matricies and array3d objects.  All take any data type inputs 
and can be found in the streams/vector, streams/matrix and streams/array3d libraries.  Matrix parts and 
concats require the prefix r or c and array3d parts and concats require the prefix x, y or z.  For example 
kernels m_rpart_fam.k, v_partovl_fam.k and a3_xparteq_fam.k are all boxes in the libraries. 

5.8.5 Find 
The find function finds all the indices of a token that are non-zero.   Find functions are provided for void 
types and can be found in the streams/vector, streams/matrix of streams/array3d libraries.   There are 
several variants of the find function depending described below.  In the table we show the equation for 
a vector find.  Each find function outputs an array of indices n[i].  Equivalent matrix and array3d finds are 
also provided.  Matrix finds output indices r[i],c[i] and arra3d finds output indices x[i],y[i],z[i]. 

Root Name Equation Descritpion 
find n[i] = find(in);   find all the indices of the non-zero elements. 
findval n[i],value[i] = find(in); 

 
Find the indices of the non-zero elements and the value 
of those elements.  Equivalent to converting a vector, 
matrix or array3d element to its sparse representation. 

findN n[i] = find(in,N)  find the indices of the first N non-zero elements 
findvalN n[i],value[i] = find(in,N); find the indices first N non-zero elements and the 

values of those elements 
findLastN n[i] = findLast(in,N); find the indices of the last N non-zero elements. 
findvalLastN n[i], v[i] = findLast(in,N); find the indices of the last N non-zero elements and the 

value of those elements. 
 

For example functions v_findval.k implements Idea equation n[i],v[i] = find(in) and m_findLastN.k 
implements Idea equation r[i],c[i]=findLast(in). 

5.8.6 Gather 
The gather function takes an array in and an array of indices and returns the values at those indices.  
Vector, matrix and array3d gather functions.   The root name is gather.  The v_gather.k function 
implements the equation out[i] = in[indx[i]].  The m_gather.k function implements out[r][c] = 



in[rindx[r]][cindx[c]].  And the a3_gather.k function implements out[x][y][z] = 
in[xindx[i]][yindx[i]][zindx[i]]. 

Note that  

n[i],v[i] = find(in); 

Is equivalent to  

n[i] = find(in); 
v[i] = gather(in,n); 

5.8.7 Scatter 
The scatter function scatters the values of a vector into a vector, matrix or array3d object.  For example 
the v_scatter.k function implements the following to scatter the values of v into the input vector in and 
produce an output vector out: 

out[i] = in[i]; 
out[indx[j]] = v[j]; 

The above is not a legitimate idea expression (out is assigned twice and the second assignment doesn’t 
take a simple range variable as its input).  Therefore the equation for the v_scatter function is  

out[i] = scatter(in,v,indx); 

And the equation for the m_scatter function is 

out[r][c] = scatter(in,v,rindx,cindx) 

and for an array3d function is 

out[x][y][z] = scatter(in,v,xindx,yindx,zindx); 

Note that if we have 

n[i],v[i] = find(in); 

We can reconstruct the input matrix in[n] as: 

y[n] = 0; 
z[n] = scatter(y,v,n); 

This allows moving back and forth between full and sparse matrix representations of a vector, matrix or 
array3d object. 

5.8.8 Mux/demux – family to time index conversion 
The following generic functions found in the streams library can be used to multiplex an input family 
onto an output stream or demultplex an input family  



fmux: out(i) = [i]in; 

demuxf:  [i]out = in(i); 

mux2: Two input mux 

demux2: Two output demux 

5.8.9 Collecting family elements into single token – family to dimension conversion 
<Input>_fam_<Output>: Where Input has 1 more dimension than Output, or Output has 1 more 
dimension than Input.  For example generic functions v_fam_m.k takes a family of vectors and creates a 
matrix. It implements the Idea equation: out[r][c] = [r]in[c];  The v_fam_s.k kernel takes a vector and 
outputs a family of scalars.  It has the idea equation: [n]out = in[n]; 

5.8.10 Reverse Vector or Matrix 
Reverse functions reverse the values in a vector, matrix or array3d token along the specified direction. 

The reverse functions are generic functions and are v_reverse.k, m_{r,c}reverse.k, a3_{x,y,z}reverse.k.  
So for example the m_rreverse.k kernel implements the equation: out[i][j] = in[#i-i-1][j] and v_reverse.k 
implements the equation out[i] = in[#i-i-1]. 

5.9 Delay 
The generic streams/delay.k kernel produces an output that is the same as the input delayed by D.  The 
first D values produced by the delay.k kernel have a value of 0 after which the tokens on the input are 
copied to the tokens on the output.   The delay kernel can be used in a feedback loop to initialize the 
loop execution and maintain the state variable of the loop. 

5.10 Vector Operations 
Some functions take an entire vector as an input as opposed to appling the function to the elements of 
the vector.  The following table lists functions of this kind provided in the streams library.  The root 
name and data type of each function is given.   

Root 
Name 

Equation Data  
Type 

Description 

fft out[i] = dft(in) xf,xd power of 2 fft 
ifft out[i] = idft(in) xf,xd power of 2 inverse fft 
ifftnd out[i] = idftnd(in) xf,xd  power of 2 inverse fft without final divide by N  
rfft out[i] = rdft(in) f,d power of 2 real fft – input is float – output is complex.  

output vector is half the size of input vector with nyquist 
point stored in out[0].im 

rifft out[i] = ridft(in) 
 

f,d power of 2 read fft – input is complex – output is real.  
Inverts results from rfft 

rifftnd out[i] = ridftnd(in) f,d Like rifft without final divide by N 
norm out = norm(in) f,d,xf,xd Root of sum of vector elements squared (2-norm) 
norminf out >?=abs(in[n]) 

out = norminf(in) 
f Infinity norm 



norm1 out += abs(in[n]) 
out = norm1(in) 

f 1-norm 

dot out += a[n]*b[n] f,d,xf,xd dot product 
dotc out += 

a[n]*conj(b[n]) 
xf,xd conjugate dot product 

dotVK out += in[n]*VK[n] f,d,xf,xd dot product of stream with real (float,double) parameter 
dotVX out += in[n]*VX[n] xf,xd dot product of stream with complex parameter 
dotcVX out += 

in[n]*conj(VX[n]) 
xf,xd conjugate dot product of stream with complex parameter 

VXdotc out += VX[n]*conj(in) xf,xd conjugate dot product of input parameter with stream 
mean out += in[n]/#n 

out = mean(in) 
f mean of vector 

meansq out += in[n]`2/#n 
out = meansq(in) 

f mean square of vector 

meanabs out += abs(in)/#n 
out = meanabs(in) 

f mean of absolute value of vector elements 

stddev out = stddev(in) f standard deviation of vector 
var out = var(in) f  variance of vector 
sort out[n] = sort(in) f out is input vector sorted in ascending order (by default) 

Set parameter Up to 0 to sort in descending order 
median out = median(in) f median value of vector 
 

 

5.11 Matrix operators 
Operations that are peculiar to matrices. 

5.11.1 Matrix Transpose 
Root 
Name 

Equation Data  
Type 

Description 

trans out[c][r] = in[r][c] f,d,xf,xd Matrix transpose 
trans_ip out[c][r] = in[r][c] f,d,xf,xd Inplace matrix transpose – same as matrix transpose 

but uses same memory for input and output. 
Conserves memory but can be much slower 

 

5.11.2 Matrix multiply 
Matrix and matrix-vector multiply kernels are provided.  Variations are provided for transposing “T” and 
not-transposing “N” each matrix input.   

mf_mmult: out[i][j] += a[i][k] * b[k][j]; 

mxf_mf_mmult: complex times real 

mf_mxf_mmult 



mf_mmultTT: out[i][j] += a[k][i] * b[j][k]; 

mf_mmultTN:  out[i][j] += a[k][i] * b[k][j]; 

mf_mmultNT: out[i][j] += a[i][k] * b[j][k]; 

{mxf_mf,mf_mxf}_mmultTT: out[i][j] += a[k][i] * b[j][k]; 

{mxf_mf,mf_mxf}_mmultTN:  out[i][j] += a[k][i] * b[k][j]; 

{mxf_mf,mf_mxf}_mmultNT: out[i][j] += a[i][k] * b[j][k]; 

mf_vf_mmult: out[i] += a[i][j] * b[j]; 

mf_vf_mmultT: out[j] += a[i][j] * b[i]; 

{mxf_vf_,mf_vxf_}_mmult{,T} 

Parameter input boxes are also provided 

mf_ mmult{,TT,TN,NT}MK, mf_MKmmult{,TT,TN,NT}, mxf_mmult{,TT,TN,NT}MK, 
mxf_mmult{,TT,TN,NT}MX, mxf_MKmmult{,TT,TN,NT}, mxf_MXmmult{,TT,TN,NT}, mf_ mmult{,T}VK, 
vf_MKmmult{,T} 

5.11.3 Outer product   
The outer product of two vectors forms a matrix has the root name outer and support f,d,xf and xd data 
types 

outer: out[r][c] = a[r]*b[c] 

5.11.4 Matrix decomposition functions 
mf_qr: QR decomposition 

mf_eig: Eigenvalue Decomposition (along with mf_eigsym2tri and mf_eigtri2di subcomponents) 

mf_svd: Singular Value Decomposition 

mf_lup: LU factorization with partial pivoting 

mf_chol: Cholesky 

mf_solve_lup: Solve using existing LU factorization from mf_lup 

mf_solve_ut: Solve upper triangular system 

mf_solve_lt: Solve lower triangular system 

mf_solve_diag: Solve diagonal system 



mf_solve: Solve least squares A x = b for x 

5.11.5 Matrix Norms 
mf_norm1: maximum of the 1-norm of the columns 

mf_normfro: Frobenius norm (square root of sum of squares of all elements) 

mf_norminf: maximum of the 1-norm of the rows 

5.12 Stream to parameter conversion and constraints 
Streams can be used to dynamically control the size of vectors and matricies.  For example a stream can 
be used to control the N parameter of an s_v.k kernel that sets the size of the output vector.  When 
using a stream in this way its value must be constrained so the Gedae compiler knows how much 
memory should be used to allocate the maximum size of the token.  These constraints can be added 
using the streams/integer/si_constrain.k kernel which forwards the input to the output while adding a 
constraint to the output to indicate its maximum size to the compiler.  The si_constrain.k kernel 
implements the Idea equation: out = constrain(in,Max).       Two integer streams can be simultaneously 
constrained and at the same time their product can be constrained using the si_constrain2.k kernel.  
This kernel implements the Idea equation out1,out2 = constrain(in1,in2,Max1,Max2,Max12) which 
guarantees that out1<=Max1, out2<=Max2 and out1*out2<=Max12.  Using such a joint constraint allows 
matrices whose sizes are controlled by out1 and out2 to only require Max12 elements to be allocated 
instead of the potentially larger Max1*Max2. 

Because constrained streams can be used to control data token sizes of streams that are running at 
different rates it is often convenient to convert the stream to a parameter using the si_param.k kernel.  
This kernel will run at the rate of the stream input parameters that it controls can run at higher rates.   
The si_param.k kernel implements the Idea equation out = param(in);  

5.13 Padding  
It is often desirable to create a padded version of a matrix or vector where the padded edges are filled in 
a specified manner.  Padding a matrix may be the first step before applying a neighborhood operator to 
the matrix. For an example a 128x128 matrix might be padded with 16 rows and columns on all sides of 
the matrix and the padded area is cleared to 0.  Or we might just want to add a pad of 8 rows to at the 
beginning of the matrix but not at the end and no padding of the columns.    And then fill the padded 
area with a mirror image of the data that follows the padded area.  Also it might be desirable to remove 
an area from the the edges of the vector or token.  We call this operation unpadding the vector or 
matrix.  This section presents functions for padding, unpadding and filling padded areas. 

To do vector padding use the kernels in streams/vector: 

v_pad{,Begin,End}.k   If the Begin or End suffix is not used both the beginning and end of the vector are 
padded.   If the Begin suffix is used only the beginning of the vector is padded and if End is used only the 
end of the vector is padded.  Matrix paddingis done with the kernels in streams/matrix.  The kernels 
v_unpad{,Begin,End}.k does the inverse padding. 



m_{r,c,rc}pad{,Begin,End}.k. The prefix r, c, or rc control whether padding is applied to the rows, 
columns or rows and columns of the matrix.  The kernels m_{r,c,rc}unapd{,Begin,End}.k peforms the 
inverse padding. 

There are three types of filling operations to fill a pad, clear, fill or mirror.  The clear operation sets the 
padded area to 0 and leaves the unpadded part alone.  The fill operation fills the padded area with the 
value at the edge of the pad.  The mirror operation fills the padded area with a mirror image of the Pad 
elements of data at the edge of the pad.  The following vector and matrix operations are provided 

v_{clear,fill,mirror}pad{,Begin,End}.k 

m_{r,c,rc}{clear,fill,mirror}Pad{,Begin,End}.k 

Typically if a vector or matrix is padded then one of the three corresponding filling operations should be 
done. So for example an m_rcpadBegin.k could be followed by an m_rcmirroPadBegin.k.  A v_pad.k 
could be followed by a v_clearPad.k.   If a filling operation does not follow the pad the area in the pad 
remains uninitialized. 

5.14 Schedule control 
gettime – The streams/gettime.k function copies its input to its output (inplace and at no cost) and 
outputs on its time output the current wallclock time (where the wallclock time is a double and gives the 
number of seconds since the application started).  This function can be used to measure the time that 
data passed along a given arc of the graph and can be used for reporting execution times or to supply 
times needed by real time control kernels. 

The streams/gate.k kernel takes an input of any type or dimensionality in on its main input and copies it 
(at no cost) to its output.  A second input t is of type int and is the trigger to the gate kernel.  The t input 
must arrive before the gate executes.  The gate function is useful for controlling the order of operations 
in a graph or for tying together parts of the application that have no other connection and are therefore 
not otherwise dataflow synchronized. 

To easily generate a trigger to the gate from any token the streams/trigger.k kernel is provided.  This 
kernel takes a token of any type or dimensionality on its input and outputs an uninitialized int on its 
output.   

Both the trigger and gate functions have no cost in that they do not actually execute at runtime but are 
only in the graph to synchronize and control the order of functions. 

6 Type conversion boxes: 
A type conversion boxes exists for all token type (s, v, m, a3) and data types pairs (c, s, i, uc, us, ui, f, d xf, 
xd, zf, zd) x'd in the table below. 

<token type><data type 1>_<token type><data type 2> 



 c s i uc us ui f d xf xd zf zd 
c   x x   x      
s   x  x  x      
i x x    x x x     
uc x  x   x x      
us  x x   x x      
ui   x    x      
f x x x x x x  x x  x  
d   x    x   x  x 
xf          x x  
xd         x   x 
zf         x   x 
zd          x x  
 

Examples: 

scalar/char/sc_si:      scalar char to int conversion 
vector/int/vi_vf:       vector int to float coversion 
matrix/complex/mxf_mxd: matrix single precision complex to double precision complex. 
scalar/float/sf_sxd:    scalar float to double precision complex. 
array3d/char/a3xf_a3zd:  3d array char to double precision split complex  

6.1 Complex-to-real 
In addition sxf_complex creates a complex output from scalar float real and imaginary stream inputs.  
sxd_complex creates a dcomplex output from scalar double real and imaginary stream inputs.   The 
kernels sxf_split and sxd_split create real and imaginary outputs from a complex input, and the kernels 
sxf_real, sxd_real, sxf_imag, and sxd_imag create real or imaginary outputs. 

7 Token conversion boxes 
Token conversion kernels convert spatial dimensions to a time index and the reverse.  Token conversion 
boxes are provided between very different token type:  {s,v,m,a3}.  Kernels are: 

Kernel Path Equation 
streams/vector/v_s.k out(n) = in[n]; 
streams/vector/s_v.k out[n] = in(n); 
streams/matrix/m_v.k out[c](r) = in[r][c]; 
streams/matrix/v_m.k out[r][c] = in[c](r); 
streams/matrix/m_s.k out(r,c) = in[r][c]; 
streams/matrix/s_m.k out[r][c] = in(r,c); 
streams/array3d/a3_m.k out[y][z](x) = in[x][y][z]; 
streams/array3d/m_a3.k out[x][y][z] = in[y][z](x); 
streams/array3d/a3_v.k out[z](x,y) = in[x][y][z]; 
streams/array3d/v_a3.k out[x][y][z] = in[z](x,y); 
streams/array3d/a3_s.k out(x,y,z) = in[x][y][z]; 



streams/array3d/s_a3.k out[x][y][z] = in(x,y,z); 
 

A kernel whose input token has more input dimension than output dimensions has an input parameter 
named after the new dimensions to be added (N,C,R,X,Y,Z).  A kernel whose input token has fewer input 
dimension than output dimensions has an output parameter named after the dimension or dimensions 
that was converted to a time index (N,C,R,X,Y,Z).   

The above kernels are all inplace and are merely a reinterpretation of the input data.  Streaming 
versions that can be efficiently used to read vectors out of a sub matrix tile are also available.  These 
kernels are named <token_type>_stream_<token_type>.  For example m_stream_v.k and v_stream_m.k 
are functionally equivalent to m_v.k and v_m.k. 

7.1 Overlap 
A common function is to convert a stream of scalars into an overlapping stream of vectors.  The generic 
streams/vector/s_ovrl_v.k kernel does this and implements the equation: 

out[i] = in(i-Ovrl); 

Where the N parameter input determines the size of range of i. 

8 E Function Completeness 
Each E function should be referenced in at least one kernel.  The following table lists the root that 
corresponds to the E function name.  Any E function not referenced is should be placed in the attic and 
be subject to removal from the library.  (In the table below “convert” refers to the full set of type 
conversion kernels which do not have a rootname.) 

e_*dotc.c dotc e_*dotpr.c Dot e_*fftwts.c N/A 
e_*fird.c fir e_*maxmgv.c maxabs e_*maxv.c max 
e_*maxv0.c max e_*meamgv.c meanabs e_*meanv.c mean 
e_*measqv.c meansqr e_*minmgv.c Minabs e_*minv.c min 
e_*minv0.c min e_*mmul.c Mmult e_*mmulacc.c mmultacc 
e_*mtran.c trans e_*mtran_ip.c trans_ip e_*mtran2.c subtrans 
e_*polar.c rec2pol e_*rect.c pol2rec e_*rfftwts.c N/A 
e_*rvadd.c add e_*rvdiv.c div e_*rvmul.c mult 
e_*rvsub.c sub e_*svdiv.c div e_*sve.c sum 
e_*svemg.c sumabs e_*svemgs.c sumabssqr e_*svesq.c sumsqr 
e_*svessq.c sumsignsqr e_*svmul.c mult e_*svsub.c sub 
e_*temp.c N/A e_*vaa.c DELETE e_*vaam.c DELETE 
e_*vabs.c abs e_*vacos.c acos e_*vadd.c add 
e_*vafix.c convert e_*vam.c DELETE e_*vasbm.c DELETE 
e_*vasin.c asin e_*vasm.c DELETE e_*vasub.c DELETE 
e_*vatan.c atan e_*vatan2.c atan2 e_*vceil.c ceil 
e_*vclip.c clip e_*vclr.c pad e_*vcomb.c convert 



e_*vconj.c conj e_*vcos.c cos e_*vcosh.c cosh 
e_*vcub.c DELETE e_*vdct.c dct e_*vdiv.c div 
e_*vdump.c N/A e_*veq.c eq e_*veql.c eq 
e_*vexp.c Exp e_*vexp10.c exp10 e_*vexp2.c exp2 
e_*vfftb.c Fft e_*vfftbcols.c cfft e_*vfill.c constant 
e_*vfirst.c Find e_*vfloat.c convert e_*vfloor.c floor 
e_*vgathr.c Gath e_*vge.c ge e_*vgt.c gt 
e_*vhypot.c hypot e_*vifftbnd.c Ifftnd e_*vifix.c convert 
e_*vklip.c DELETE e_*vlast.c find e_*vle.c le 
e_*vlim.c DELETE e_*vlint.c Interp2 e_*vlnot.c not 
e_*vlog.c log e_*vlog10.c log10 e_*vlog2.c log2 
e_*vlt.c lt e_*vma.c multadd e_*vmags.c abssqr 
e_*vmax.c max e_*vmaxmg.c maxmg e_*vmin.c min 
e_*vminmg.c minmg e_*vmma.c DELETE e_*vmmsb.c DELETE 
e_*vmov.c copy e_*vmrg.c merge e_*vmsa.c multadd 
e_*vmsb.c multsub e_*vmsn.c submult e_*vmul.c mult 
e_*vnabs.c DELETE e_*vne.c ne e_*vneg.c neg 
e_*vneql.c Ne e_*vphas.c DELETE e_*vpolre.c DELETE 
e_*vpow.c Pow e_*vprog.c acc e_*vramp.c ramp 
e_*vrcip.c DELETE e_*vrecip.c recip e_*vrectp.c DELETE 
e_*vrfft.c Rfft e_*vrfftnd.c rfftnd e_*vround.c round 
e_*vrsmul.c mult e_*vrvrs.c reverse e_*vsadd.c add 
e_*vsam.c DELETE e_*vsbm.c DELETE e_*vsbsbm.c DELETE 
e_*vsbsm.c DELETE e_*vscale.c DELETE e_*vscatr.c scat 
e_*vsdiv.c div e_*vselect.c select e_*vsfix.c convert 
e_*vshrink.c DELETE e_*vsin.c sin e_*vsinh.c sinh 
e_*vsma.c multadd e_*vsmsa.c multadd e_*vsmsb.c multsub 
e_*vsmul.c mult e_*vsort.c sort e_*vsplit.c convert 
e_*vsq.c sqr e_*vsqrt.c sqrt e_*vss.c DELETE 
e_*vssq.c signsqr e_*vsub.c sub e_*vsubsq.c DELETE 
e_*vswap.c N/A e_*vtan.c tan e_*vtanh.c tanh 
e_*vthr.c thresmax e_*vthres.c DELETE e_*vtrunc.c trunc 
e_*vuafix.c convert e_*vuifix.c convert e_*vusfix.c convert 
e_a3mov.c getcopy e_conv2d.c conv e_dctwts.c N/A 
e_fftwtscols.c N/A e_ivand.c bitand e_ivmod.c mod 
e_ivor.c bitor e_minsrt.c setcopy e_mmov.c getcopy 
e_rmsqv.c norm e_sacorr.c acorr e_sccoh.c ccoh 
e_sccorr.c ccorr e_scorr.c corr e_sfact.c fact 
e_slsq.c DELETE e_smeandev.c DELETE e_srange.c DELETE 
e_sstddev.c stddev e_subsqs.c DELETE e_svar.c var 
e_swmean.c DELETE     
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